CS229机器学习 决策树 | Vol4

之前《机器学习》选修课被大佬手撕决策树算法给震撼了,因为之前从来没有尝试过数学和代码的角度来看待算法,不过寒假静下来,可以看出作为基模型运用到很多递归、贪心中的思想,写出来发现难度并没有那么大!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from math import log
import operator
import numpy as np
class decisionTree():
def dataLoader(self,filename):
dataSet = [];
labels = []
i=1
fr = open(filename)
for line in fr.readlines(): # 逐行读取,滤除空格等
lineArr = line.strip().split(',')
if i==1:
labels=lineArr[1:(len(lineArr)-1)]
i=i+1
else:
dataSet.append(lineArr[1:])
return dataSet,labels


def createExampleDataset(self):
'''
返回示例数据,包括dataset、labels
'''
dataSet = [['白', '高', '男'],
['黑', '高', '男'],
['白', '高', '男'],
['黑', '低', '女'],
['黑', '低', '女'],
['黑', '高', '女'],
['白', '低', '女'],
['黑', '高', '女']]
labels = ['颜色', '身高'] # 两个特征
return dataSet, labels

def calcCrossEntropy(self, dataSet):
'''
计算数据集合中的数据熵
return crossEntropy
'''
classList = [example[-1] for example in dataSet]
unique,counts=np.unique(classList,return_counts=True)
crossEntropy=0
for count in counts:
crossEntropy+=-float(count/len(classList))*log(float(count/len(classList)),2)
return crossEntropy

def chooseBestFeature(self, dataSet):
'''
从不同特征中选择交叉熵差值最低的作为分离特征
return bestFeature下标
'''
bestInfoGain=-1
baseCrossEntropy=self.calcCrossEntropy(dataSet)
numFeature=len(dataSet[0])-1
for i in range(numFeature):
# 根据不同特征分开,并重新计算根据每个特征得到的交叉熵的和
featureList=set([example[i] for example in dataSet])
newCrossEntropy=0
for value in featureList:
subDataSet=self.splitDataSet(dataSet,i,value)

newCrossEntropy+=len(subDataSet)/len(dataSet)*self.calcCrossEntropy(subDataSet)

infoGain=baseCrossEntropy-newCrossEntropy
if infoGain>bestInfoGain:
bestInfoGain=infoGain
bestFeature=i
return bestFeature


def splitDataSet(self, dataSet, index,value):
'''
根据最佳的特征分离数据集,形成新的子集
'''

subDataSet=[]
for example in dataSet:
if example[index]==value:
temp=example[:index]
temp.extend(example[index+1:])
subDataSet.append(temp)
return subDataSet

def ifNodeFeatureIsSame(self,dataSet):
featureMat = [example[:(len(dataSet[0])-1)] for example in dataSet]
uniqueFeatureMat=np.unique(featureMat)
if len(uniqueFeatureMat) == 1:
return True
else:
return False

def majorityCount(self,classList):
className,counts=np.unique(np.array(classList))
return className[np.argmax(counts)]

def createTree(self,dataSet,labels):
# 生成结点node
classList=[example[-1] for example in dataSet]

# 情况1:当前分支中全部都为同一个属性不需要分类
# 情况2:当前分支为1集合不需要分类
# 情况3:最优化划分

if classList.count(classList[0])==len(classList):
return classList[0]

if len(labels)==0 or self.ifNodeFeatureIsSame(dataSet):
return self.majorityCount(classList)

bestFeature=self.chooseBestFeature(dataSet)
bestFeatureLabel=labels[bestFeature]
myTree={bestFeatureLabel:{}}

#删除区分的属性
del(labels[bestFeature])

featureValues=[example[bestFeature] for example in dataSet]
uniqueValues=set(featureValues)
for value in uniqueValues:
sublabels=labels[:]
myTree[bestFeatureLabel][value]= \
self.createTree(self.splitDataSet(dataSet, bestFeature, value), sublabels)
return myTree




if __name__=='__main__':
newTree=decisionTree()
filename='datasets/watermelon.txt'
dataSet,labels=newTree.dataLoader(filename)
#或者直接根据例子来
#dataSet,labels=newTree.createExampleDataset()
print(newTree.createTree(dataSet,labels))

txt文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
编号,色泽,根蒂,敲声,纹理,脐部,触感,好瓜
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,是
2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,是
3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,是
4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,是
5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,是
6,青绿,稍蜷,浊响,清晰,稍凹,软粘,是
7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,是
8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,是
9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,否
10,青绿,硬挺,清脆,清晰,平坦,软粘,否
11,浅白,硬挺,清脆,模糊,平坦,硬滑,否
12,浅白,蜷缩,浊响,模糊,平坦,软粘,否
13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,否
14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,否
15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,否
16,浅白,蜷缩,浊响,模糊,平坦,硬滑,否
17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,否

CS229机器学习 决策树 | Vol4
https://blog.chenxia.site/posts/fad3d23f.html
作者
chenlongxu
发布于
2024年4月29日
许可协议