1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
| import torch.nn as nn import torch.nn.functional as F
class Net(nn.Module): def __init__(self): super().__init__() self.conv1=nn.Conv2d(1,6,5) self.conv2=nn.Conv2d(6,16,5) self.fc1=nn.Linear(16*5*5,120) self.fc2=nn.Linear(120,84) self.fc3=nn.Linear(84,10)
def forward(self,x): x=F.max_pool2d(F.relu(self.conv1(x)),(2,2)) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features net=Net()
input=torch.randn(1,1,32,32,requires_grad=True)
output=net(input)
target=torch.rand(10) target=target.unsqueeze(0) criterion=nn.MSELoss()
loss=criterion(target,output)
import torch.optim as optim optimizer=optim.SGD(net.parameters(),lr=0.01) print('conv1.bias.grad before backward') print(net.conv1.bias.grad) optimizer.zero_grad() out=net(input) loss=criterion(output,target) loss.backward() optimizer.step() print('conv1.bias.grad after backward') print(net.conv1.bias.grad)
import torchvision import torchvision.transforms as transforms
transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset=torchvision.datasets.CIFAR10(root='../data',train=True,download=False,transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) import matplotlib.pyplot as plt import numpy as np
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def imshow(img): img = img / 2 + 0.5 npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0)))
dataiter = iter(trainloader) images, labels = next(dataiter)
imshow(torchvision.utils.make_grid(images))
print(' '.join('%5s' % classes[labels[j]] for j in range(4))) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10)
def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(2):
running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()
running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0
print('Finished Training')
|